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The effects of Prandtl number on two-dimensional thermocapillary convection and molten pool shape
induced by negative surface tension coefficient in welding or melting with a time-dependent and distrib-
uted incident flux are numerically predicted in this study. This work is also applicable for predicting the
quasi-steady three-dimensional thermocapillary convection. In this model, the time-dependent incident
flux is specified as a function of scanning speed and energy distribution parameter. The computed flow
patterns and molten pool shapes under the flat free surface are found to have distinct regions for different
Marangoni and Prandtl numbers. Prandtl number indicates the thickness ratio between momentum and
thermal boundary layers, whereas Marangoni number with negative surface tension coefficient induces
an outward surface flow. Rather than the enhanced pool depth resulted from melting from an induced
vortex cell near the bottom in the case of Prandtl number much less than unity, the molten pool shape
for Prandtl number much greater than unity can produce a thin and narrow edge. The variations of Peclet
number and dimensionless beam power with flow and temperature fields and fusion zone shapes are
similar. The dimensionless peak surface speed versus product of Marangoni and Prandtl number, which
involve predicted peak speed and temperature and molten pool width on the surface, agree with scale
analysis and experimental data provided in the literature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Heat transfer and fluid flow calculations in fusion welding has
provided significant insight about the welding process and the
welded materials. In simple alloy systems, the computed tempera-
ture fields can be used to model phase composition, grain structure
and inclusion structure [1–4]. In many cases, the weld cross-
sections show wavy fusion boundary where the slope of the fusion
boundary changes sign depending on the location [4,5]. Previous
research has established the importance of wavy fusion boundary
in affecting the solidification process and the structure and proper-
ties of the welds. For example, Liu and DuPont [5] showed that the
shape of the fusion boundary and the welding velocity affected the
local dendrite growth velocity during welding of single-crystal
nickel based superalloy. However, the conditions for the formation
of such boundary have not been systematically understood. Com-
putational heat transfer and fluid flow can also be used to compute
weld pool geometry [6–11], cooling rate [7,10,11], local solidifica-
tion rates, changes in alloy composition due to vaporization of
alloying elements and dissolution of gases [12], and required to
understand the defects such as ripping, humping, spiking, undercut
and porosity [13–20].
ll rights reserved.
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Extensive three-dimensional computations have been first
provided by Kou and Wang [6]. They presented a steady-state
three-dimensional model to predict the effects of surface tension
gradients (and buoyancy and electromagnetic forces) on flow and
temperature fields, molten pool shapes, segregation and porosity
during arc welding of aluminum. The computed results confirmed
the finding on the role of surface tension gradient in weld pool con-
vection and shape from Heiple and Roper [21]. Zacharia et al. [9]
also developed an elaborate unsteady three-dimensional turbulent
model accounting for surface tension coefficient affected by sur-
face active solutes on fluid flow and temperature field and during
arc and laser beam welding of type 304 stainless steel. Two cells
were seen to be resulted from changing sign of surface tension
coefficient in the presence of the surface active solutes near the
edge of the pool.

Chan et al. [10] proposed a two-dimensional transient semi-
infinite model to predict thermal and flow fields in a laser melted
pool driven by thermocapillary force with negative surface tension
coefficient. The heat source is stationary, even though the scanning
speed and width of the source with constant flux were incorpo-
rated to non-dimensionalize time, space, momentum, and temper-
ature. Neglecting latent heat and considering identical thermal
conductivities between solid and liquid, it showed that there ex-
isted two counter rotating cells, except for high Prandtl number
greater than 2.6 leading to the only cell induced the maximum
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Nomenclature

f volumetric fraction of liquid to solid
Fr Froude number = U=

ffiffiffiffiffiffi
grp

h molten pool depth at the centerline, h� ¼ h=r
hs‘ latent heat for solid–liquid phase transition
k thermal conductivity ratio, k� ¼ k=k‘
Ma Marangoni number, Ma � jdc=dTjðTm � T1Þr=la‘
Maf Marangoni number, Maf � jdc=dTjðTmax � TmÞw=la‘
p pressure, p* = p/qU2

Pe Peclet number = Ur/a‘
Q beam power, Q� ¼ Q=½k‘rðTm � T1Þ�
Ste Stefan number = cps(Tm-T1)/hs‘

t time, t* = tU/r
T temperature,T� ¼ ðT � T1Þ=ðTm � T1Þ
U scanning speed
u,v horizontal and vertical components of velocity, u* = u/U,

v* = v/U
w molten pool width, w* = w/r
X* half width of incident flux on top surface, X* = X/r

x,y,z coordinate, as illustrated in Fig. 1, x* = x/r,
y� ¼ y=r; z� ¼ z=r

Subscripts
f free surface
‘ liquid
m melting
s solid
� dimensionless quantity
1 ambient

Greek letters
a thermal diffusivity
b thermal expansion coefficient, b* = b(Tm � T1)
c surface tension, surface tension coefficient dc/dT is con-

stant
r energy distribution parameter
l dynamic viscosity
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depth away from the symmetric axis. It seems questionable that
the surface temperature increased with increasing surface tension
parameter. The width-to-depth depth ratio increased with Prandtl
number. It was interestingly found that the width-to-depth ratio
increased with surface tension number until a local maximum
around 9.8 was reached at the surface tension number around
55,000 for a Prandtl number Pr = 0.1. A further increasing surface
tension number from 55,000 to 100,000 leaded to the width-to-
depth ratio decreasing from 9.8 to 7.5 as a result of the deep
penetration.

Limmaneevichitr and Kou [22] conducted experiments to ex-
plain the effects of Prandtl number and Peclet number on the weld
pool shapes for gallium (Ga) and sodium nitrate (NaNO3) subject to
a stationary defocused CO2 laser beam. In view of having low and
high Prandtl numbers, metal Ga and NaNO3 pools represented the
low and high extremes of Peclet number, respectively, with com-
monly welded metals such as aluminum, steel and stainless steel
falling in between. The Peclet number was defined by the product
of maximum surface speed and radius of the pool divided by ther-
mal diffusivity, indicating the ratio between heat transport by con-
vection to that of conduction. Even though estimation of Peclet
number is difficult due to the unknown maximum surface speed
and molten pool width, it was indeed found that the pool bottom
was concave for metal Ga with low Peclet number due to a pro-
moted conduction down into the pool. For sodium nitrate NaNO3,
however, promoted outward convective heat transport, and the
resultant pool bottom was shallow and flat. Reducing the beam
diameter further increased surface speed and Peclet number. The
fast outward surface flow turned and penetrated downward at
the pool edge, resulting in a convex pool bottom. It was proposed
that, the pool bottom convexity increases with increasing Peclet
number.

In this study, the previous unsteady two-dimensional heat
transfer model [23,24] is used to predict the fusion zone shape af-
fected by Marangoni convection with a negative surface tension
coefficient for different Prandtl numbers during melting and weld-
ing with a low-power density-beam. The heat source is a time-
dependent function of energy distribution parameter and scanning
speed. Even though the transport phenomena have been exten-
sively studied, the wavy pool boundary affected by different
Marangoni and Prandtl numbers is still required. Microstructures
and defects of materials which are closely related to the wavy pool
boundary encountered in materials and manufacturing processing
can therefore be revealed from this work.

2. System model and analysis

In this work, an unsteady two-dimensional model [23,24] is
used to simulate Marangoni convection during welding or melting
of workpieces in depth H and width B/2. In reality, welding is a
three-dimensional process, accomplished by an energy beam with
a beam radius or energy distribution parameter r moving at a
scanning speed U along the joint plane in the negative z coordinate,
as sketched in Fig. 1(a). The energy distribution parameter defines
the region in which 95 percent of the total energy is deposited.
Fluid flow in the molten pool is driven by thermocapillary force
on the flat free surface at a cross-section z = 0, as illustrated in
Fig. 1(b). To simplify the analysis without loss of generality, the
major assumptions made are the following:

1. An unsteady two-dimensional heat transfer model subject to
time-dependent incident flux is applied to simulate the quasi-
steady three-dimensional heat transfer, as verified from scale
analysis [25]. This is because the energy required for develop-
ment of the two-dimensional fusion zone shape is of the same
magnitude as that for heating and melting the incoming solid
in the three-dimensional case.

2. Incident flux of energy beam absorbed by the top surface is of a
Gaussian distribution, being relevant in laser and electron beam
welding [26,27].

3. Electromagnetic forces are not accounted for, because the heat
source is chosen as laser or electron beam.

4. The free surface of the pool is flat, due to a small capillary num-
ber (� DTðdc=dTÞ=cm) around 0.05–0.1 in most metals [28].

5. Evaporation rates are neglected [12,29].
6. Physical and thermal properties are averaged within the tem-

perature range considered.

With the above assumptions, dimensionless equations of conti-
nuity, momentum and energy in the workpiece are, respectively,
reduced to
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Fig. 1. Schematic sketch for (a) physical model and coordinates, and (b) computed results on the transverse cross-section at z = 0.
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where the term on the right-hand side of Eq. (4) represents latent
heat evolution. The major driving force is Marangoni force, which
is balanced by viscous stress on the flat free surface
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The incident flux of a Gaussian distribution on the top surface is

@T�

@y�
¼ 3Q �

p
expð�3r�2Þ for

jx�j � X�ðt�Þ
0 � t� � 2

�
ð6Þ

where dimensionless radial coordinate and time-dependent half
width of the incident flux are geometrically found to be (see
Fig. 1(a))

r�ðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�2 þ ð1� t�Þ2

q
ð7Þ

X�ðt�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� t�Þ2

q
ð8Þ

Dimensionless half beam width of the incident flux and time in
Eq. (8) are, respectively, normalized by the energy distribution
parameter, and ratio between the energy distribution parameter
and scanning speed. The time-dependent beam radius governed
by Eq. (8) therefore realistically accounts for the effects of scan-
ning speed of energy beam on heat transfer in the two-dimen-
sional model. The incident flux with time-dependent beam
radius X*(t*) is equivalent to that of the moving energy beam with
a constant energy distribution parameter r in the realistic three-
dimensional case. Eqs. (6)–(8) indicate that the cross-section con-
sidered at z* = 0 is irradiated by incident energy flux on a surface
region jx�j � X�ðt�Þ and dimensionless time 0 � t� � 2. At dimen-
sionless time t* = 0, corresponding to zero half beam width, the
incident energy starts to heat at x* = 0 on the cross-section at
z* = 0. This can be considered as the moving energy beam starts
to touch the cross-section. The half width of the incident flux in-
creases from zero to the energy distribution parameter as dimen-
sionless time increases from zero to t* = 1. In order words, the
beam approaches and leaves the cross-section after dimensionless
time of zero and unity, respectively. A further increase in time re-
sults in the beam width to decrease. After t* = 2, beam width be-
comes zero and no incident energy is irradiated on the top
surface of the cross-section. Boundary conditions are zero veloci-
ties, and conduction balanced by convection on the right, left, and
bottom surfaces. Initial conditions are T� ¼ T�0, u* = v* = 0.

2.1. Numerical procedure

A control-volume formulation and a fully implicit, staggered, fi-
nite-difference method was used to solve Eqs. (1)–(4) together
with boundary and initial conditions [23,24]. Different mesh sys-
tems 90 � 90, 120 � 120, 180 � 180 for spatial coordinates, and
mesh systems of 40 and 80 in the time direction within the total
dimensionless time of 2.4 were used for testing convergence. The
predicted dimensionless surface speed and temperature as func-
tions of time for different meshes are found to converge, as shown
in Fig. 2(a). In the case of the mesh system of 180 � 180 � 40 used
in this work, the relative errors of velocity and pressure became
smaller than 10�4. The maximum dilatation of the continuity equa-
tion was 10�5. The relative errors for the sensible heat and fraction
of liquid were less than 10�3 and 10�4, respectively. In order to
confirm the computed results, the predicted dimensionless peak
surface velocity versus product of Marangoni and Prandtl numbers,
which involve predicted peak velocity (uf), temperature and mol-
ten pool width on the surface, is compared with that obtained from
scale analysis for Prandtl number greater than unity [30,31], as
shown in Fig. 2(b). It can be seen that the computed results agree
with scale analysis. In welding or melting Marangoni number is as
high as 103–104 for most metals, based on a surface liquid velocity
1–10 m/s, beam radius of 10�3–10�4 m and thermal diffusivity of
10�5 m2/s. Inertia and viscous forces must be of the same order
of magnitude in the thin momentum shear layer. Furthermore, vis-
cous shear is balanced by the driving force of thermocapillary force
at the free surface. Irrespective of Prandtl number, the peak surface
velocity can be scaled to be proportional to the 2/3 power of
Marangoni number and 1/3 power of Prandtl number. Different
scales for high Maragnoni number as discussed by Rivas and Ost-
rach [32] were due to scaling temperature difference involving fur-
ther scaling of thermal boundary layer thickness. Rivas and Ostrach
[32] also found that the weld pools predicted from this scale
analysis agreed well with experimental data. Fig. 2(c) shows that
the predicted dimensionless peak surface velocity versus product
of Marangoni and Prandtl numbers agree with the same scale
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analysis, and experimental data [33–35] for Prandtl number small
than unity.
Fig. 2. (a) Convergence test for dimensionless peak surface temperature and
velocity as functions of time, (b) comparison between predicted dimensionless peak
surface velocity versus product of Marangoni and Prandtl numbers and scale
analysis for Prandtl number greater than unity, and (c) comparison between
predicted dimensionless peak surface velocity versus product of Marangoni and
Prandtl numbers and scale analysis, and available experimental data [33–35] for
Prandtl number less than unity.
3. Results and discussion

In this work, independent parameters primarily controlling phys-
ical phenomena are Marangoni number (Ma or Maf), Prandtl number
(Pr), dimensionless beam power (Q*) and Peclet number (Pe). Even
though materials with high Prandtl number in welding or melting
are rarely found, studying the effects of large Prandtl number on
transport processes in this work has its academic importance and
fundamental clarification of physical concepts. The effects of surface
tension coefficient is included in Marangoni number, whereas the
scanning speed and power of the incident flux are, respectively, ac-
counted from Peclet number and dimensionless beam power. Rather
than that defined by Limmaneevichitr and Kou [22], Peclet number
defined by the product of scanning speed and energy distribution
parameter divided by thermal diffusivity of the liquid indicates the
ratio between scanning speed and diffusion rate of the incident flux.
The following figures are referred to the transport phenomena and
molten pool shapes corresponding to the time at which the molten
pool area reaches the maximum.

The flow patterns for different Marangoni and Prandtl numbers
are shown in Fig. 3(a). In the typical case of dimensionless beam
power Q* = 15 and Peclet number Pe = 0.72, the flow patterns and
molten pool shapes can be classified into distinct regions. Irrespec-
tive of Prandtl number, the molten pool is hemispheric for small
Marangoni number roughly less than 100. In view of negligible
Marangoni force, heat transfer in the molten pool is conduction
in radial directions. A further increase in Marangoni number re-
sults in the bottom of the molten pool to change from hemisphere
to convex. As Marangoni number is greater than 104–105 for Pra-
ndtl number greater than 4, the second small cell is induced near
the edge of the molten pool. The second cell occurs because of a
Fig. 3. Dimensionless (a) flow patterns, (b) width-to-depth ratios of molten pools
for different Marangoni and Prandtl numbers.
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rapid temperature drop near the cold edge. It is interesting to find
that the edge of the molten pool is long and thin, resulted from
penetration of Marangoni convection, as can be interpreted later.
The maximum depth of the molten pool is displaced away from
the centerline by increasing Marangoni number. Eventually, the
long and thin edge is disappeared and left a small cell near the
edge. This leads to slight decrease and increase in the width and
depth of the molten pool, respectively. For Prandtl numbers
roughly less than 4, a second small cell is induced near the central
line of the convex molten pool. This is attributed to the drop of sur-
face temperature near the edge of the incident flux. The flow pat-
terns and molten pool shapes are similar extension from those
for Prandtl number less than unity [25].

The corresponding the width-to-depth ratio as a function of
Marangoni and Prandtl numbers for Prandtl number greater than
unity is shown in Fig. 3(b). The increase in small Marangoni num-
ber increases the width-to-depth ratio of the molten pool rapidly
from around 2 to the maximum around 14 and 8 for Prandtl num-
bers less and greater than 5, respectively. This reflects the facts that
the molten pool in the hemisphere shape is dominated by heat
conduction, and rapidly changed to a shallow shape controlled
by Marangoni convection. The effects of Marangoni number on
the width-to-depth ratio thus are pronounced for smaller Prandtl
Fig. 4. Dimensionless (a) depths and (b) widths of molten pools for different
Marangoni and Prandtl numbers.
numbers. A further increase in Marangoni number gradually
reduces the increase of the width-to-depth ratio until asymptotic
values are reached.

In order to support description of previous Fig. 3(b), the corre-
sponding dimensionless depths of the molten pool shape for differ-
ent Marangoni and Prandtl numbers are shown in Fig. 4(a). Except
for very small Prandtl numbers of, for example, 0.06, the molten
pool depth, which decreases with increasing Marangoni number
in a range less than 103, is insensitive to the variation of Prandtl
number. It is interesting to find that a further increase in Marang-
oni number results in the molten pool depth to decrease further
and then increase. Furthermore, even though the molten pool for
Pr = 9 has the long and thin edge, the pool depth at the centerline
increases with Marangoni number. The deviations between molten
pool depths are increased by increasing Marangoni number and
difference in Prandtl numbers, where the minimum molten pool
depth occurs at Pr = 1. Significant increase in the depth with the
similar and pronounced trend is found for very low Prandtl num-
bers. The reason for this is that the secondary cell is induced near
the bottom of the pool [25]. Fig. 4(b) shows that the dimensionless
molten pool width, which increases with Marangoni number, is
nearly independent of Prandtl number for Pr > 1. The molten pool
width, however, decreases with Prandtl number for Pr < 1. As
Fig. 5. Computed dimensionless (a) temperature and (b) velocity on free surface
corresponding to the maximum molten pool for different Marangoni numbers at
Pr = 9.



Fig. 7. Sketch for the effects of Prandtl number on molten pool shapes, (a) Pr ? 0,
(b) Pr << 1, and (c) Pr >> 1.
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Marangoni number is sufficiently high, an increase in Marangoni
number may reduce the molten pool width.

The effects of Marangoni number on the dimensionless temper-
ature profile along the free surface corresponding to previous fig-
ures at a Prandtl number of 9 are shown in Fig. 5(a). It can be
seen that surface temperature exhibits three distinct regimes, the
hot, intermediate and cold corner regimes. Rather than the inter-
mediate regime, curvatures of surface temperature in the hot and
cold corner regimes are negative, indicating Marangoni force in-
creases in the outward direction. The hot regime is irradiated by
incident flux roughly within 0 � x� � 1. The cold corner regime is
near the edge of the pool, where the transition between solid
and liquid takes place. In view of enhanced outward and upward
flows near the free surface, the width of the intermediate regime
is increased, and the resulted surface temperature and its drop in
the hot and intermediate regimes are decreased by increasing
Marangoni number. On the other hand, an increase in Marangoni
number reduces the width and increases surface temperature gra-
dient in the cold corner regime.

The corresponding dimensionless surface speed is shown in
Fig. 5(b), indicating the outward flow increases rapidly until the
location near beam radius is reached. Surface speed then drops,
as a result of the decrease in surface temperature gradient in the
intermediate regime. It is noted that the opposite result was found
in the case of Prandtl number much less than unity, where surface
velocity increases in the intermediate regime until the cold corner
regime is reached [25]. A secondary peak is found to take place
near the pool edge. The second peak surface velocity is resulted
from Marangoni force via the rapid drop of surface temperature
in the cold corner regime. Its jump increased with increasing
Marangoni number. As Marangoni number becomes as high as
Fig. 6. Computed dimensionless flow and temperature fields corresponding to the m
Maf = 560,000.
2 � 104, the surface temperature and velocity profiles exhibit oscil-
latory behavior near the centerline. An investigation of the oscilla-
tions near the centerline is of interest and challenging.

The computed dimensionless flow and temperature fields and
molten pool shapes corresponding to the maximum molten pool
for Marangoni number Maf = 10,200 are shown in Fig. 6(a). This fig-
aximum molten pool at Pr = 9 for (a) Maf = 10,200, (b) Maf = 156,500, and (c)



Fig. 8. Computed dimensionless (a) temperature and (b) velocity on free surface
corresponding to the maximum molten pool for different Marangoni numbers at
Pr = 3.

Fig. 9. Computed dimensionless flow and temperature fields corresponding to
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ure demonstrates the flow and temperature fields for a case in pre-
vious figures (Fig. 5(a) and (b)). Evidently, the flow forms a vortex
cell circulating in the clockwise direction, as shown on the right-
hand side, due to a negative surface tension coefficient. The tem-
perature field shown on the left-hand side is distorted owing to
thermocapillary convection in the outward direction on the free
surface and upward direction along the centerline. The molten pool
thus is shallow and the bottom is a convex shape. The half width of
the molten pool is greater than the energy distribution parameter
of the incident flux primarily due to Marangoni convection. The
other small cell rotating in the same clockwise direction also occur
near the edge and free surface for a high Marangoni number of
156,500, as shown in Fig. 6(b). It is interesting to find that the
shape of the molten pool near the edge is long and thin. The long
and thin edge of the molten pool is disappeared for a further in-
crease in Marangoni number, as shown in Fig. 6(c). The maximum
depth is further displaced in the outward direction by increasing
Marangoni number. It is interesting to find that the isothermals
in the molten pool are rather uniform.

To interpret the long and thin edge of the molten pool, a sche-
matic sketch is proposed and shown in Fig. 7(a) through (c). As
illustrated in Fig. 7(a), the molten pool shape is a hemisphere for
a Prandtl number approaching zero. In this case, thermal diffusion
dominates heat transfer. Pure heat conduction in radial directions
thus is responsible for the molten pool shape, while directional
convective heat transfer is negligible. In the case of Prandtl num-
bers less than unity, as illustrated in Fig. 7(b), the thickness of
the thermal boundary layer is thicker than that of the momentum
boundary layer. Heat transfer across the boundary of the molten
pool therefore is approximately in radial directions. The bottom
of the molten pool shape thus is concave. Fig. 7(c) shows that the
thickness of the thermal boundary layer is thinner than that of
the momentum boundary layer for Prandtl number greater than
unity. Marangoni convection in a thin layer therefore penetrates
the solid along the surface and produces a long and thin edge of
the molten pool.

A decrease in Prandtl number to Pr = 3 for a given Marangoni
number results in surface temperature to increase and velocity to
decrease, as shown in Fig. 8(a) and (b), respectively. The decrease
in surface velocity with Prandtl number is attributed to a decrease
the maximum molten pool at Pr = 3 for (a) Maf = 6800, (b) Maf = 57,300.



Fig. 10. Computed dimensionless flow and temperature fields corresponding to the maximum molten pool at Pr = 9 and for (a) Maf = 43,300 and Pe = 0.96, and (b)
Maf = 13,800 and Q* = 23.
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in viscosity, which reduces surface tension coefficient to maintain
the same Marangoni number. Referred to previous Fig. 7(c) in the
case of Prandtl number greater than unity, the increase in surface
temperature resulted from decreasing Prandtl number can be
interpreted by a decrease in surface speed to satisfy energy conser-
vation in the thermal boundary layer whose thickness is less that
of momentum boundary layer. On the other hand, for Prandtl num-
ber less than unity the increase in surface temperature resulted
from a decrease in Prandtl number is due to a decrease in surface
velocity and enhanced heat conduction through the momentum
boundary layer to the pool bottom in the thick thermal boundary
layer. Surface temperature and velocity profiles are quite similar
for different Prandtl numbers (see Fig. 5(a) and (b)). Two peaks
of surface velocity can be found. The first peak is located near
the boundary of the energy beam, while the second peak, which
can be a half of the first peak, takes place near the edge of the cold
corner regime. Their occurrences are apparently attributed to
Marangoni force induced by significant drop of surface tempera-
ture. Two peak velocities thus are increased with increasing
Marangoni number. The positive curvature of the surface temper-
ature in the intermediate region results in a decrease in surface
velocity. The width and depth of separation between two peaks
are increased with increasing Marangoni number. The flow pat-
terns and temperature fields corresponding to Marangoni numbers
of 6,800 and 57,300 are presented in Fig. 9(a) and (b), respectively.

The effects of Peclet number on temperature fields and molten
pool shapes are shown in Fig. 10(a). An increase in Peclet number
results in decreases in velocity and temperature and molten pool
sizes. This is because for an increase in Peclet number implies a de-
crease in incident energy per unit welding length to heat and melt
the incoming solid, as can be seen from the energy balance
Q � qUwh[cp(Tm � T1) + hs‘]. Flow patterns, temperature fields
and the molten pool shapes with a long and thin edge are similar
to previous Fig. 6(b). Referring to previous Fig. 6(a) and (b),
Fig. 10(b) show that an increase in dimensionless beam power evi-
dently increases the width and depth of the molten pool, while
fluid flow and temperature fields are similar. The long and thin
edge is enhanced by increasing beam power. These figures implies
the flow patterns and width-to-depth ratios induced by changing
Peclet number and dimensionless beam power are similar to those
presented in previous Fig. 3(a) and (b).
4. Conclusions

The following are the main conclusions:

1. The molten pool shapes for Prandtl number greater than
unity exhibit distinct regions: (i) The pool shape is a hemi-
sphere for Marangoni number Maf < 100; (ii) The pool bot-
tom becomes convex for 100 < Maf < 105; (iii) The bottom
of the shallow pool is slightly convex near the centerline
for Pr < 4 and Ma > 105; (iv) The pool penetrates along the
top surface, resulting in a long and thin edge for Pr > 4 and
Maf > 105. This edge is disappeared as Marangoni number
further increases.

2. The long and thin edge is a result of the thickness of thermal
boundary layer less than that of momentum boundary layer.
Melting occurs by penetrative heating from thin thickness of
thermal boundary layer.

3. Except for very small Prandtl numbers (for example,
Pr = 0.06), the decrease in the pool depth with increasing
Marangoni number in a range less than 103 is insensitive
to the variation of Prandtl number. A further increase in
Marangoni number results in the pool depth to continuously
decrease and then increase. The deviation of pool depths is
increased by increasing Marangoni number and difference
in Prandtl numbers, where the minimum pool depth occurs
at Pr = 1. Significant increase in the depth with the similar
and pronounced trend is found for very low Prandtl
numbers.

4. The pool width, which increases with Marangoni number, is
nearly independent of Prandtl number for Pr > 1. The pool
width, however, decreases with Prandtl number for Pr < 1.
As Marangoni number is sufficiently high, an increase in
Marangoni number may reduce the pool width.

5. The width-to-depth ratio of the pool exhibits a rapid
increase by increasing small Marangoni number, irrespec-
tive of Prandtl number. The minimum width-to-depth
around 2 reflects a hemispherical molten pool, dominated
by pure conduction. The subsequent increase in the width-
to-depth ratio is attributed to Marangoni convection. As
Marangoni number further increases, the increase of the
width-to-depth ratio reduces. For given Marangoni number
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the width-to-depth ratio decreases with increasing Prandtl
number.

6. The surface temperature reveals the hot, intermediate and
cold corner regions. The hot region is irradiated by incident
flux, whereas the cold corner region is near the edge of the
pool. Surface temperatures in the hot and cold corner
regions exhibit significant drop. As Marangoni and Prandtl
numbers increase, widths of the intermediate and cold cor-
ner regions increase and decrease, respectively.

7. Surface temperature in the hot region is decreased with
increasing Prandtl and Marangoni numbers. The curvature
of surface temperature in the cold corner region is more neg-
ative by reducing Prandtl number.

8. In the case of Pr > 1 the increase in surface temperature
resulted from decreasing Prandtl number can be interpreted
by a decrease in surface speed to satisfy energy conservation
in the thermal boundary layer whose thickness is less that of
momentum boundary layer. On the other hand, for Pr < 1 the
increase in surface temperature from a decrease in Prandtl
number is due to a decrease in surface velocity and
enhanced heat conduction through the momentum bound-
ary layer to the pool bottom in the thick thermal boundary
layer.

9. The first peak of surface velocity is located near the bound-
ary of the energy beam, whereas the second peak, which can
be a half of the first peak, takes place near the edge of the
cold corner region. Their occurrences are attributed to
Marangoni force induced by significant drop of surface tem-
perature. Two peak velocities thus are increased with
increasing Marangoni number.

10. The positive curvature of the surface temperature in the
intermediate region results in a decrease in surface velocity.
The width and depth of separation between two peaks are
increased with increasing Marangoni number.

11. As Marangoni number is greater than 2 � 104, surface veloc-
ity and temperature becomes oscillatory near the centerline.

12. Irrespective of Prandtl number, the peak surface temperature
is increased with decreasing Peclet number or scanning speed
of the incident flux, and increasing dimensionless beam
power. The flow and temperature fields, however, are similar.
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